国产欧美日韩在线播放,国产女与黑人在线精品电影,亚洲精品老熟熟女日韩系列AV,亚洲无码无需下载,中文字幕AV制服丝袜综合,欧美香蕉视频在线观看

您的位置: 首頁(yè) > 技術(shù)文章 > 植物“熒光”:比肉眼更懂植物健康

植物“熒光”:比肉眼更懂植物健康

更新時(shí)間:2025-04-30瀏覽:52次

Plant "Fluorescence": Understanding Plant Health Beyond the Naked Eye


在日常農(nóng)業(yè)生產(chǎn)與生態(tài)環(huán)境監(jiān)測(cè)中,農(nóng)作物或植被的健康狀況常常出現(xiàn)一些表面上難以察覺(jué)的變化。想象這樣一個(gè)場(chǎng)景:肉眼觀察并發(fā)現(xiàn)沒(méi)有明顯的病蟲(chóng)害或營(yíng)養(yǎng)缺陷,但田間產(chǎn)量卻出現(xiàn)了下滑。傳統(tǒng)的植被指數(shù)(例如NDVI)在此類情況下有時(shí)難以及時(shí)捕捉到植物內(nèi)部的光合作用變化,從而導(dǎo)致對(duì)產(chǎn)量乃至生態(tài)系統(tǒng)健康狀態(tài)的錯(cuò)誤判斷。


正是在這種背景下,日光誘導(dǎo)葉綠素?zé)晒猓?span>SIF)技術(shù)應(yīng)運(yùn)而生,并迅速成為科學(xué)界和產(chǎn)業(yè)界關(guān)注的焦點(diǎn)。這項(xiàng)技術(shù)直接反映了植物光合作用的真實(shí)動(dòng)態(tài),為檢測(cè)植物壓力、預(yù)測(cè)作物生產(chǎn)力以及評(píng)估生態(tài)系統(tǒng)功能提供了一種全新的、精確的監(jiān)測(cè)手段。SIF技術(shù)作為一種“植物的心電圖",能夠捕捉到植物在光合作用過(guò)程中釋放出的微弱熒光信號(hào)。這種信號(hào)與傳統(tǒng)通過(guò)反射獲得的植被指數(shù)存在本質(zhì)不同,其優(yōu)勢(shì)在于能直接反映植物內(nèi)在生理活動(dòng),而非僅僅依賴葉面積、綠度等表面特征。


In daily agricultural production and ecological environment monitoring, crops and vegetation often exhibit subtle changes in their health status that are difficult to detect with the naked eye. Imagine a scenario: you observe a field with no obvious signs of pests, diseases, or nutrient deficiencies, yet the yield is declining. Traditional vegetation indices, such as NDVI, sometimes fail to capture the underlying photosynthetic changes in plants in such cases, leading to incorrect assessments of yield and even ecosystem health.


It is against this backdrop that Solar-Induced Chlorophyll Fluorescence (SIF) technology has emerged and rapidly become a focal point in the scientific and industrial communities. This technology directly reflects the true dynamics of plant photosynthesis, providing a novel and precise monitoring tool for detecting plant stress, predicting crop productivity, and evaluating ecosystem function. SIF technology, acting as a "plant electrocardiogram", captures the faint fluorescence signals emitted by plants during photosynthesis. This signal is fundamentally different from traditional vegetation indices derived from reflection, as its advantage lies in directly reflecting the plant's intrinsic physiological activity, rather than merely relying on surface characteristics like leaf area or greenness.


植物“熒光

土壤-植被-大氣連續(xù)統(tǒng)中植被尺度的生態(tài)過(guò)程和水勢(shì)梯度

Ecological Processes and Water Potential Gradients at the Vegetation Scale within the Soil-Vegetation-Atmosphere Continuum


什么是日光誘導(dǎo)葉綠素?zé)晒猓⊿IF)?

What is Solar-Induced Chlorophyll Fluorescence (SIF)?

日光誘導(dǎo)葉綠素?zé)晒猓?span>Solar-induced chlorophyll fluorescence, SIF),是一種直接反映植物光合作用效率的信號(hào),其產(chǎn)生過(guò)程與光合作用密切相關(guān)。簡(jiǎn)而言之,植物在吸收太陽(yáng)光能后,一部分能量用于光合作用,而另一部分能量則通過(guò)熱散發(fā)或以葉綠素?zé)晒庑问捷椛涑鰜?lái)。SIF技術(shù)通過(guò)傳感器對(duì)這些熒光信號(hào)進(jìn)行捕捉和解析,從而直接衡量光合活動(dòng)的強(qiáng)弱及其隨時(shí)間和環(huán)境條件的動(dòng)態(tài)變化。


Solar-Induced Chlorophyll Fluorescence (SIF) is a signal that directly reflects the efficiency of plant photosynthesis. Its generation process is closely linked to photosynthesis. Simply put, after plants absorb solar energy, a portion of this energy is used for photosynthesis, while another portion is dissipated as heat or re-emitted as chlorophyll fluorescence. SIF technology captures and analyzes these fluorescence signals using sensors, thereby directly measuring the intensity of photosynthetic activity and its dynamic changes over time and under varying environmental conditions.


植物“熒光

(A) 農(nóng)田面積上基于 SIF 的年度作物 GPP 估計(jì)的空間詳細(xì)信息、(B) 每個(gè)網(wǎng)格框的農(nóng)田面積比例

(A) Spatially explicit estimates of annual crop GPP based on SIF over agricultural areas, and (B) the proportion of agricultural area in each grid box


1.1 SIF信號(hào)的形成與檢測(cè)機(jī)制

Formation and Detection Mechanism of SIF Signals

在光合作用過(guò)程中,植被吸收了大量太陽(yáng)能后,為維持光合平衡并防止能量過(guò)剩引起的光損傷,葉綠素會(huì)釋放出非常微弱的熒光信號(hào)。這一熒光信號(hào)主要集中在紅光(約680nm)和遠(yuǎn)紅光(約740nm)波段,正是這一特性使得SIF成為捕捉植物內(nèi)部光合作用活動(dòng)的重要手段。而且,不同類型的作物和自然植被,其SIF信號(hào)強(qiáng)度和動(dòng)態(tài)響應(yīng)存在區(qū)域性差異,如同植物體內(nèi)生理狀態(tài)的實(shí)時(shí)反饋。


During photosynthesis, after absorbing a large amount of solar energy, vegetation releases very faint fluorescence signals to maintain photosynthetic balance and prevent photoinhibition caused by excess energy. This fluorescence signal is primarily concentrated in the red light (around 680nm) and far-red light (around 740nm) spectral bands. This specific characteristic makes SIF a crucial means of capturing the internal photosynthetic activity of plants. Furthermore, different types of crops and natural vegetation exhibit regional variations in SIF signal intensity and dynamic response, serving as a real-time feedback of the plant's internal physiological state.


1.2 夫瑯禾費(fèi)暗線的“井"填充效應(yīng)

The "Filling" Effect of Fraunhofer Lines

在自然光照條件下,植被反射的光譜實(shí)際上包含了兩個(gè)部分:一部分是葉片對(duì)入射太陽(yáng)光的反射,另一部分則是植被自身發(fā)射的日光誘導(dǎo)葉綠素?zé)晒猓?span>SIF)。雖然SIF的信號(hào)非常微弱,通常不到太陽(yáng)入射能量的1%,遠(yuǎn)弱于植被的反射光,但在特定的波段,我們可以巧妙地利用一個(gè)自然現(xiàn)象來(lái)提取SIF信號(hào)。這個(gè)自然現(xiàn)象就是“夫瑯禾費(fèi)暗線"。由于太陽(yáng)和地球大氣層的吸收作用,太陽(yáng)光譜中存在一些非常狹窄且強(qiáng)度較低的“暗線"(寬度為0.1~10nm),這些就是夫瑯禾費(fèi)暗線。在這些暗線位置,太陽(yáng)光的能量顯著低于周?chē)ǘ巍?/p>


葉綠素?zé)晒獾墓庾V輻射恰好會(huì)填充這些暗線區(qū)域,使得在這些暗線位置,SIF的相對(duì)比例顯著增大。因此,將太陽(yáng)輻射和植被反射光譜中某個(gè)波段的夫瑯禾費(fèi)暗線與相鄰的波譜之間的相對(duì)強(qiáng)度進(jìn)行比較,二者之間的差異就可以用來(lái)反演出SIF的強(qiáng)度。這就像在太陽(yáng)光譜的“凹陷處"找到了SIF留下的“填補(bǔ)"痕跡,通過(guò)測(cè)量這種填補(bǔ)的程度,我們就能估算出SIF的強(qiáng)度。


Under natural illumination, the spectrum reflected by vegetation actually comprises two components: one is the reflection of incident solar light by the leaves, and the other is the Solar-Induced Chlorophyll Fluorescence (SIF) emitted by the vegetation itself. Although the SIF signal is very weak, typically less than 1% of the incoming solar energy and much weaker than reflected light, we can cleverly utilize a natural phenomenon to extract the SIF signal at specific wavelengths. This phenomenon is known as "Fraunhofer Lines". Due to the absorption by the sun and the Earth's atmosphere, the solar spectrum contains very narrow and less intense "dark lines" (with widths ranging from 0.1 to 10nm). These are the Fraunhofer lines. At these dark line positions, the solar energy is significantly lower than in the surrounding spectral regions.


The spectral radiation of chlorophyll fluorescence happens to "fill in" these dark line regions, causing the relative proportion of SIF to significantly increase at these Fraunhofer line positions. Therefore, by comparing the relative intensity between a Fraunhofer line and its adjacent spectral region in both the incoming solar radiation and the vegetation's reflected radiance spectra, the difference can be used to retrieve the intensity of SIF. This is akin to finding the "filling" trace left by SIF in the "dips" of the solar spectrum. By measuring the extent of this filling, we can estimate the intensity of SIF.


植物“熒光

葉綠素?zé)晒猓⊿IF)對(duì)夫瑯和費(fèi)暗線的“井"填充效應(yīng)

The "In-filling" Effect of Chlorophyll Fluorescence (SIF) on Fraunhofer Lines


SIF:植物的心電圖

SIF: The Plant's Electrocardiogram

從前面的介紹可知,SIF能夠更直接、更敏感地反映植物光合作用的效率和健康狀況。SIF可以看作是植物的“心電圖",用來(lái)監(jiān)測(cè)植物生理活動(dòng)的“脈搏"。憑借這個(gè)特性,SIF在眾多領(lǐng)域展現(xiàn)出強(qiáng)大的應(yīng)用潛力,以下是它的主要應(yīng)用方向:


As discussed, SIF provides a more direct and sensitive reflection of plant photosynthetic efficiency and health status. SIF can be considered the plant's "electrocardiogram," used to monitor the "pulse" of its physiological activity. With this characteristic, SIF demonstrates powerful application potential in numerous fields. Here are its main application areas:


農(nóng)業(yè)領(lǐng)域

• 監(jiān)測(cè)作物生長(zhǎng):SIF能夠?qū)崟r(shí)反映作物的生長(zhǎng)活力,幫助了解作物的生長(zhǎng)狀態(tài),及時(shí)調(diào)整管理措施。

• 診斷病蟲(chóng)害和脅迫:在作物表現(xiàn)出肉眼可見(jiàn)的病蟲(chóng)害或水分脅迫癥狀之前,SIF信號(hào)可能已經(jīng)發(fā)生變化,為早期預(yù)警和精準(zhǔn)施策提供依據(jù)。

• 優(yōu)化施肥灌溉:根據(jù)SIF數(shù)據(jù)評(píng)估作物對(duì)養(yǎng)分和水分的需求,實(shí)現(xiàn)精準(zhǔn)施肥和灌溉,提高資源利用效率,降低生產(chǎn)成本。

• 產(chǎn)量預(yù)估: SIF與作物最終產(chǎn)量之間存在良好的相關(guān)性,利用SIF數(shù)據(jù)可以更準(zhǔn)確地預(yù)估作物產(chǎn)量,為農(nóng)業(yè)生產(chǎn)決策提供支持。

Agricultural

• Monitoring Crop Growth: SIF can reflect crop growth vitality in real-time, helping to understand the growth status of crops and adjust management measures promptly.

• Diagnosing Pests, Diseases, and Stress: Before crops exhibit visible symptoms of pests, diseases, or water stress, the SIF signal may have already changed, providing a basis for early warning and precise intervention strategies.

• Optimizing Fertilization and Irrigation: SIF data can be used to assess crop demand for nutrients and water, enabling precise fertilization and irrigation, improving resource utilization efficiency, and reducing production costs.

• Yield Prediction: There is a good correlation between SIF and final crop yield. Utilizing SIF data can lead to more accurate crop yield predictions, supporting agricultural production decisions.


林業(yè)領(lǐng)域

• 評(píng)估森林健康:通過(guò)監(jiān)測(cè)SIF,可以評(píng)估森林的光合能力和健康狀況,及時(shí)發(fā)現(xiàn)森林退化或病蟲(chóng)害侵襲的區(qū)域。

• 監(jiān)測(cè)森林火災(zāi)風(fēng)險(xiǎn):干旱和高溫會(huì)導(dǎo)致森林植被水分含量降低,光合作用下降,SIF信號(hào)隨之減弱。利用SIF數(shù)據(jù)可以評(píng)估森林的干旱程度,輔助進(jìn)行森林火險(xiǎn)預(yù)警。

Forestry

• Assessing Forest Health: By monitoring SIF, the photosynthetic capacity and health status of forests can be evaluated, allowing for the timely identification of areas experiencing degradation or pest and disease outbreaks.

• Monitoring Forest Fire Risk: Drought and high temperatures lead to reduced water content in forest vegetation and decreased photosynthesis, resulting in a weakening of the SIF signal. SIF data can be used to assess the severity of drought in forests and assist in forest fire risk warning.


生態(tài)研究

• 監(jiān)測(cè)植被生產(chǎn)力:SIF數(shù)據(jù)可以用于估算區(qū)域和全球尺度的植被總初級(jí)生產(chǎn)力(GPP),幫助科學(xué)家理解陸地生態(tài)系統(tǒng)碳循環(huán),評(píng)估氣候變化對(duì)植被的影響。

• 研究生態(tài)系統(tǒng)對(duì)環(huán)境變化的響應(yīng): 利用SIF監(jiān)測(cè)氣候事件(如干旱、熱浪)對(duì)不同生態(tài)系統(tǒng)的影響,深入了解生態(tài)系統(tǒng)的脆弱性和恢復(fù)能力。

Ecological

• Monitoring Vegetation Productivity: SIF data can be used to estimate Gross Primary Production (GPP) at regional and global scales, helping scientists understand terrestrial ecosystem carbon cycling and evaluate the impact of climate change on vegetation.

• Studying Ecosystem Responses to Environmental Changes: SIF can be used to monitor the impact of extreme climate events (such as drought and heatwaves) on different ecosystems, providing deeper insights into ecosystem vulnerability and resilience.


預(yù)告 Preview

我們了解了SIF是什么,它如何產(chǎn)生。SIF微弱卻蘊(yùn)含著巨大的信息量,它是植物與我們“對(duì)話"的一種特殊方式。這些數(shù)據(jù)能在實(shí)際中發(fā)揮哪些作用呢?在接下來(lái)的文章中,我們將通過(guò)具體的應(yīng)用案例,展示SIF在農(nóng)業(yè)、林業(yè)、生態(tài)研究等領(lǐng)域的巨大潛力。敬請(qǐng)期待!


We have learned what SIF is and how it is produced. Despite being weak, SIF carries a wealth of information. It is a special way for plants to "communicate" with us. How can this data be applied in practice? In the following articles, we will showcase the immense potential of SIF in agriculture, forestry, ecological research, and other fields through specific application examples. Stay tuned!


如果您對(duì)SIF設(shè)備或相關(guān)方面有興趣,歡迎隨時(shí)聯(lián)系我們了解咨詢相關(guān)產(chǎn)品信息。


If you are interested in SIF equipment or related aspects, please feel free to contact us for product information.

638688151519925011471.jpg



參考論文 / Articals

1. Ni. Zhuoya.L. et al., A Review of Retrieving in Sun-Induced Chlorophyll Fluorescence, Advances in Meteorological Science and Technology (2021).

2. L.Guanter,Y.et al., Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence, Proc. Natl. Acad. Sci. U.S.A. 111 (14) E1327-E1333.


 

Contact Us
  • 客服熱線:400-688-7769
  • 郵箱:market@exponentsci.com
  • 固話:020-89858550
  • 地址:廣州市天河區(qū)廣汕二路602號(hào)惠誠(chéng)大廈B座403房

掃一掃  微信咨詢

©2025 愛(ài)博能(廣州)科學(xué)技術(shù)有限公司 版權(quán)所有    備案號(hào):粵ICP備20046466號(hào)    技術(shù)支持:化工儀器網(wǎng)    Sitemap.xml    總訪問(wèn)量:69066    管理登陸